- 1. Radiative natural SUSY and
- 2. Post LHC8 SUSY benchmark points for ILC physics
 - 1. HB, Barger, Huang, Mickelson, Mustafayev, Tata
 - 2. Howie Baer (Oklahoma) & Jenny List (DESY)

Goals

- 1. provide assessment of post-LHC8 SUSY
 - 2. is there still a role for ILC to play?

YES! precision measurements to be sure, but also likely as a DISCOVERY MACHINE!

What are main SUSY lessons from LHC8?

- 1. discovery of SM-like Higgs scalar at m(h)~125 GeV confirms fundamental prediction of post LEP2 MSSM: m(h)~114-135 GeV
- 2. No sign of SUSY so far: e.g. in mSUGRA/CMSSM

$$m_{\tilde{g}} > 1 \; TeV \; for \; m_{\tilde{q}} \gg m_{\tilde{g}}$$

 $m_{\tilde{g}} > 1.4 \; TeV \; for \; m_{\tilde{q}} \simeq m_{\tilde{g}}$

3. Seemingly violates predictions from many theorists: story of SUSY naturalness: sparticles ought to be below ~TeV

Little hierarchy problem: how can it be that m(Z)=91.2 GeV while sparticles > TeV?

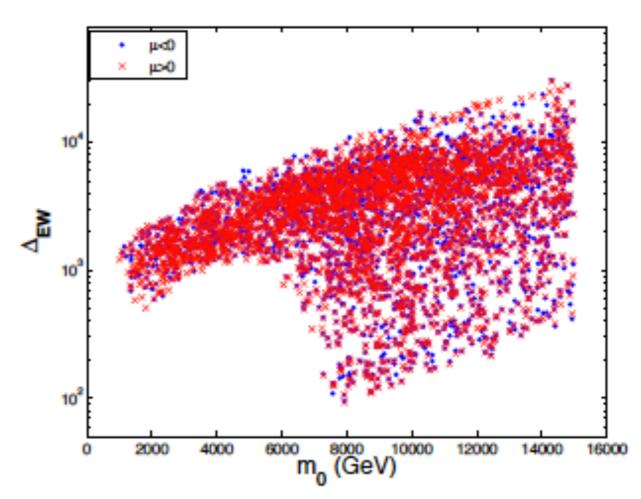
New measure of naturalness:

how can m(Z)=91.2 GeV when sparticles >> TeV?

$$\frac{m_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d^d) - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \qquad \simeq -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$

Each contribution to m(Z) relation ought be of order m(Z)! i.e. no large cancellations amongst independent contributions to m(Z)

$$\Delta_{\rm EW} \equiv max(C_i)/(M_Z^2/2)$$


- Model independent (impose at weak scale!)
- Conservative (necessary but perhaps not sufficient)
- measureable (reconstruct from weak scale Lagrangian)
- unambiguous (depends on spectra not parameters)
- predictive [m(higgsino)~m(higgs)]
- falsifiable (no light higgsinos at ILC then SUSY EW naturalness dead)

simple to compute (Isajet 7.83)

Requiring low Δ_{EW} rules out some old favorites

scan over mSUGRA

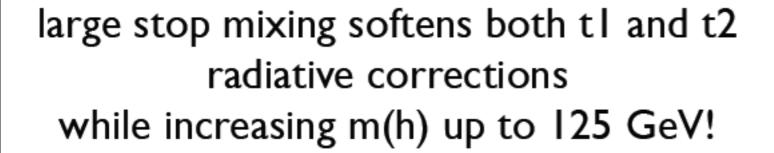
- mSUGRA
- mGMSB
- mAMSB

HB, Barger, Huang, Mickelson, Mustafayev, Tata, arXiv:1210.3019

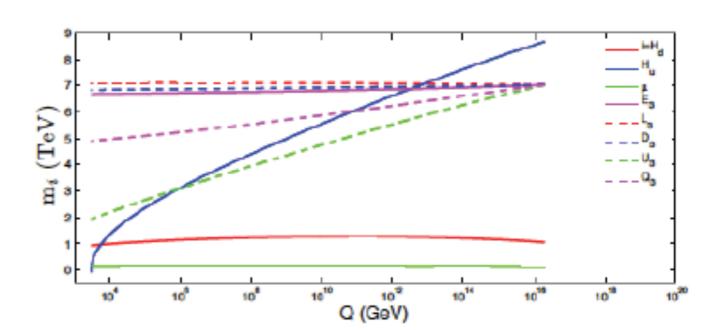
LHC limits & m(h)=125 GeV => $\Delta_{EW} > 100 \ or \ < 1\% \ EWFT$

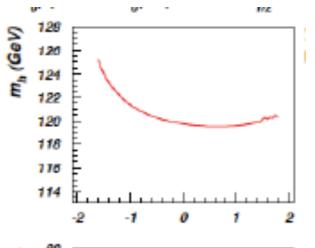
(All spectra from Isajet 7.83, Paige, Protopopescu, HB, Tata, hep-ph/0312045)

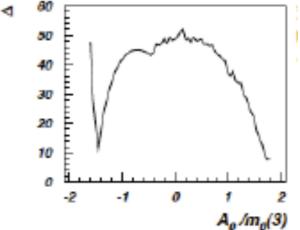
Radiative natural SUSY (from NUHM2)


$$\bullet \quad \mu^2 \sim (m_Z^2/2)$$

•
$$m_{H_u}^2 > m_0^2$$

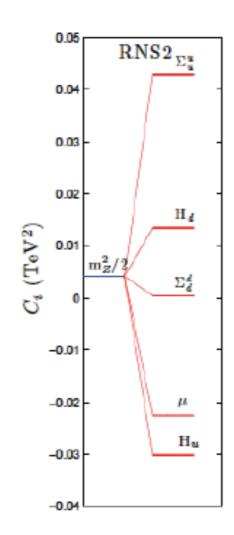

•
$$\Sigma_u^u(\tilde{t}_{1,2}) \ small$$

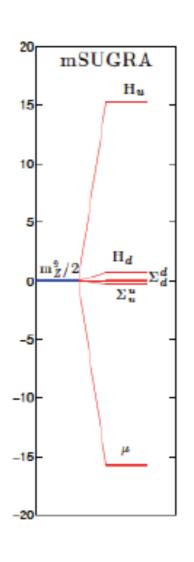

$$\Sigma_u^u(\tilde{t}_{1,2}) = \frac{3}{16\pi^2} F(m_{\tilde{t}_{1,2}}^2) \times \left[f_t^2 - g_Z^2 \mp \frac{f_t^2 A_t^2 - 8g_Z^2 (\frac{1}{4} - \frac{2}{3} x_W) \Delta_t}{m_{\tilde{t}_0}^2 - m_{\tilde{t}_1}^2} \right]$$

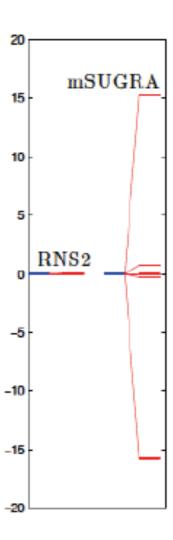

$$F(m^2) = m^2 (\log(m^2/Q^2) - 1)$$
, with $Q^2 = m_{\tilde{t}_1} m_{\tilde{t}_2}$

HB, Barger, Huang, Mickelson, Mustafayev, Tata PRL109(2012)161802 and arXiv:1212.2655

Compare RNS to mSUGRA for similar parameters


 $m_0 = 7025 \text{ GeV}, \ m_{1/2} = 568.3 \text{ GeV}, \ A_0 = -11426.6 \text{ GeV}, \ \tan \beta = 8.55 \text{ with } \mu = 150 \text{ GeV} \text{ and } m_A = 1000 \text{ GeV}$

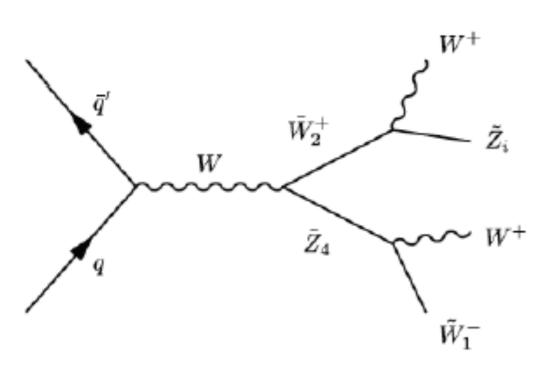

RNS


- C_Σ^u ~ (205 GeV)²
- $C_{H_d} \sim (114 \text{ GeV})^2$
- $C_{\Sigma_d^d} \sim (22 \text{ GeV})^2$
- $C_{\mu} \sim -(148 \text{ GeV})^2$
- $C_{H_u} \sim -(173 \text{ GeV})^2$
- $m_Z^2/2 \simeq (65 \text{ GeV})^2$

mSUGRA

- $C_{H_u} \simeq (3.87 \text{ TeV})^2$
- $C_{\mu} \simeq -(3.93 \text{ TeV})^2$

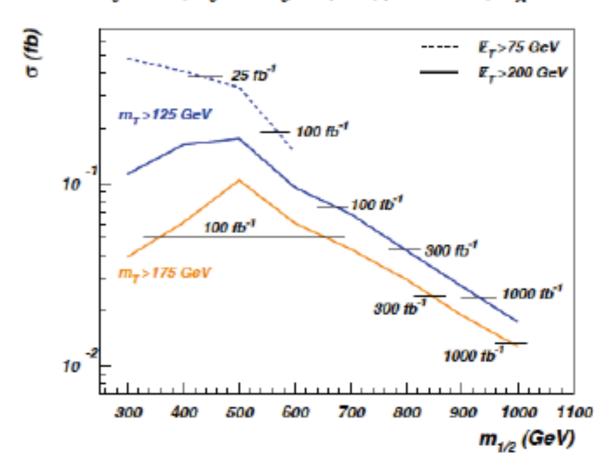
large cancellations


SUSY spectra from radiatively-driven natural SUSY (RNS)

scan NUHM2 space:

- light higgsino-like \widetilde{W}_1 and $\overline{Z}_{1,2}$ with mass $\sim 100-300$ GeV,
- gluinos with mass m_{g̃} ~ 1 − 4 TeV,
- heavier top squarks than generic NS models: m_{t̄1} ~ 1 − 2 TeV and m_{t̄2} ~ 2 − 5 TeV,
- first/second generation squarks and sleptons with mass m_{q̃,ℓ̃} ~ 1 − 8 TeV. The m_{ℓ̃} range can be pushed up to 20-30 TeV if non-universality of generations with m₀(1,2) > m₀(3) is allowed.

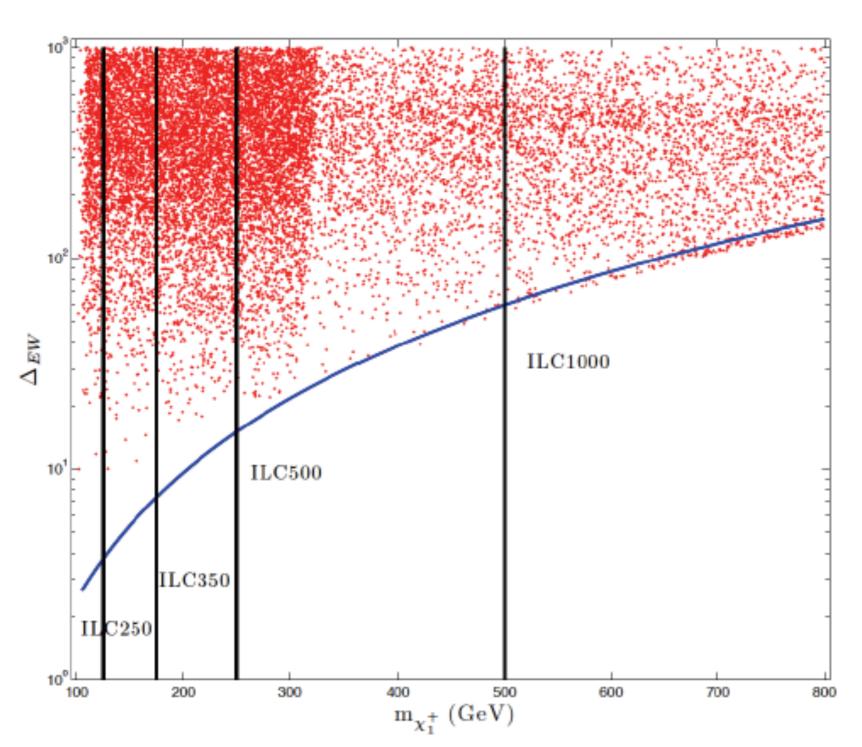
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	parameter	RNS1	RNS2	NS2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_0(1, 2)$	10000	7025.0	19542.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_0(3)$	5000	7025.0	2430.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_{1/2}$	700	568.3	1549.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_0	-7300	-11426.6	873.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\tan \beta$	10	8.55	22.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μ	150	150	150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m_A	1000	1000	1652.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_{\tilde{g}}$	1859.0	1562.8	3696.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_{\tilde{u}_L}$	10050.9	7020.9	19736.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{u}_R}$	10141.6	7256.2	19762.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{e}_R}$	9909.9	6755.4	19537.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{t}_1}$	1415.9	1843.4	572.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{t}_2}$	3424.8	4921.4	715.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{b_1}	3450.1	4962.6	497.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{b}_2}$	4823.6	6914.9	1723.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{\tau}_1}$	4737.5	6679.4	2084.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{\tau}_2}$	5020.7	7116.9	2189.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{\nu}_{\tau}}$	5000.1	7128.3	2061.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{W}_2}$	621.3	513.9	1341.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		154.2	152.7	156.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		631.2	525.2	1340.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		323.3	268.8	698.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		158.5	159.2	156.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		140.0	135.4	149.2
$BF(b \to s\gamma) \times 10^4$ 3.3 3.3 3.6 $BF(B_s \to \mu^+\mu^-) \times 10^9$ 3.8 3.8 4.0 $\sigma^{SI}(\widetilde{Z}_1p)$ (pb) 1.1 × 10 ⁻⁸ 1.7 × 10 ⁻⁸ 1.8 × 10 ⁻⁹	m_h	123.7	125.0	121.1
$BF(b \to s\gamma) \times 10^4$ 3.3 3.3 3.6 $BF(B_s \to \mu^+\mu^-) \times 10^9$ 3.8 3.8 4.0 $\sigma^{SI}(\widetilde{Z}_1p)$ (pb) 1.1 × 10 ⁻⁸ 1.7 × 10 ⁻⁸ 1.8 × 10 ⁻⁹	$\Omega_{\widetilde{Z}_{i}}^{std}h^{2}$	0.009	0.01	0.006
$\sigma^{SI}(\widetilde{Z}_1p)$ (pb) $1.1 \times 10^{-8} \ 1.7 \times 10^{-8} \ 1.8 \times 10^{-9}$		3.3	3.3	3.6
		3.8	3.8	4.0
Δ 9.7 11.5 23.7	$\sigma^{SI}(\widetilde{Z}_1p)$ (pb)	1.1×10^{-8}	1.7×10^{-8}	1.8×10^{-9}
	Δ	9.7	11.5	23.7


Distinctive new signature for LHC: same-sign dibosons from models with light higgsinos

HB, Barger, Huang, Mickelson, Mustafayev, Sreethawong, Tata, arXiv:1302.5816, (PRL in press)

Int. lum. (fb^{-1})	$m_{1/2}$ (GeV)	$m_{\tilde{g}}$ (TeV)	$m_{\tilde{g}} \; (\text{TeV}) \; [\tilde{g}\tilde{g}]$
10	400	0.96	1.4
100	840	2.0	1.6
300	920	2.2	1.8
1000	1000	2.4	2.0

NUHM2: $m_0=5$ TeV, $A_0=-1.6m_{gr}$ $tan\beta=15$, $\mu=150$ GeV, $m_{\Lambda}=1$ TeV



- exactly 2 isolated same-sign leptons with p_T(ℓ₁) > 20 GeV and p_T(ℓ₂) > 10 GeV,
- n(b − jets) = 0 (to aid in vetoing tt̄ background).
 - $m_T^{\min} \equiv \min [m_T(\ell_1, E_T), m_T(\ell_2, E_T)] > 125 \text{ GeV}$ $E_T^{'} > 200 \text{ GeV}$

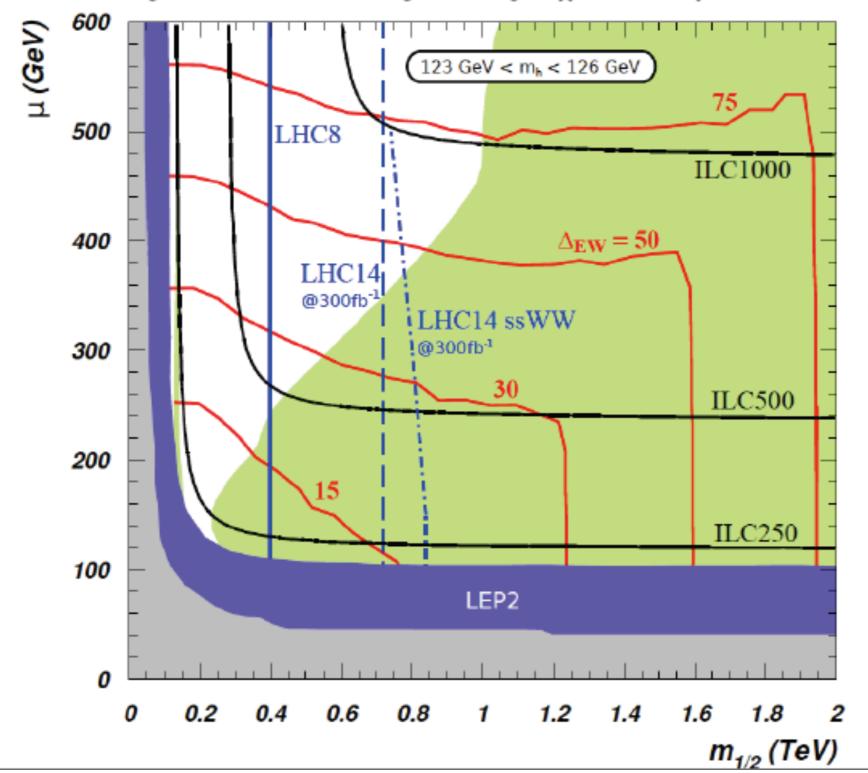
Reach at LHC14 exceeds usual gluino pair search!

Smoking gun signature: 4 light higgsinos at ILC!

$$e^+e^- \to \tilde{W}_1^+\tilde{W}_1^-, \ \tilde{Z}_1\tilde{Z}_2$$

$$m_{\tilde{W}_{1}^{\pm}}, m_{\tilde{Z}_{1,2}}$$

$$\sqrt{s} \sim \sqrt{2\Delta_{EW}} m_Z$$


ILC/CLIC have capability to measure SUSY parameters and actually reconstruct

$$\Delta_{EW}$$

measure and check if nature is EWFT'd?

LHC/ILC complementarity

NUHM2: m_0 =5 TeV, $tan\beta$ =15, A_0 =-1.6 m_0 , m_A =1TeV, m_t =173.2 GeV

While LHC has some capacity, it will require ILC to draw the story of SUSY electroweak naturalness to a conclusion!

A. Mustafayev plot

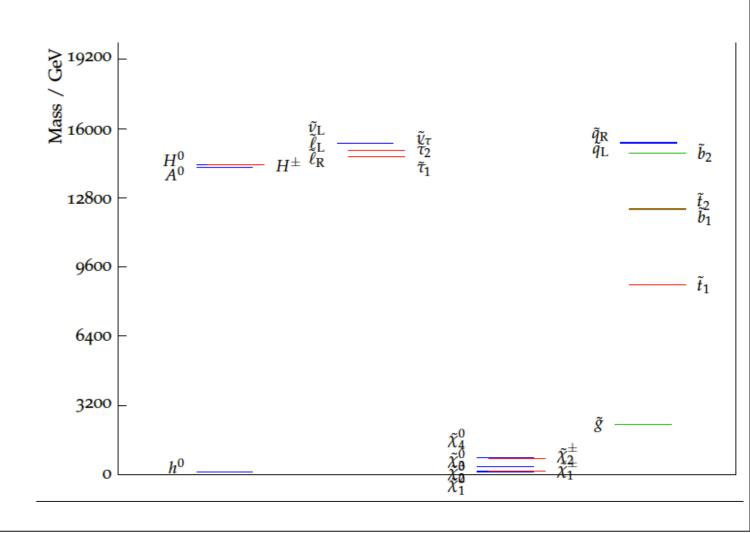
Post LHC8 SUSY benchmarks for ILC physics HB and Jenny List

arXiv:1205.6929

website:

http://www-flc.desy.de/ldcoptimization/physics.php

LHA files available


mSUGRA/CMSSM: HB/FP region

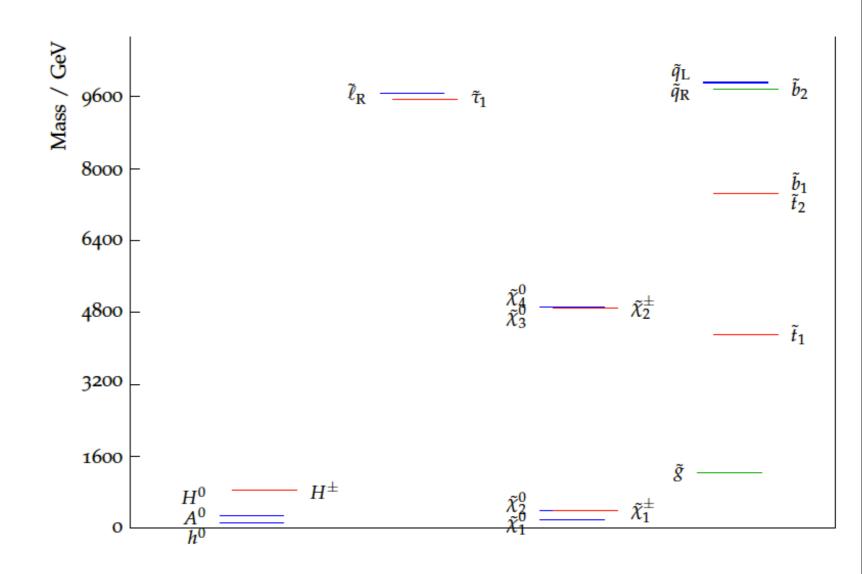
Due to m(h)=125 GeV need for A0.ne.0, HB/FP region moves much further out in m0

In spite of low mu, heavy stops lead to large EW finetuning

At LHC: gluino pair production: reach to m(gl)~1.8 TeV for 300 fb-1

At ILC, various mixed higgsino-gaugino pairs accessible

NUHM2 model:

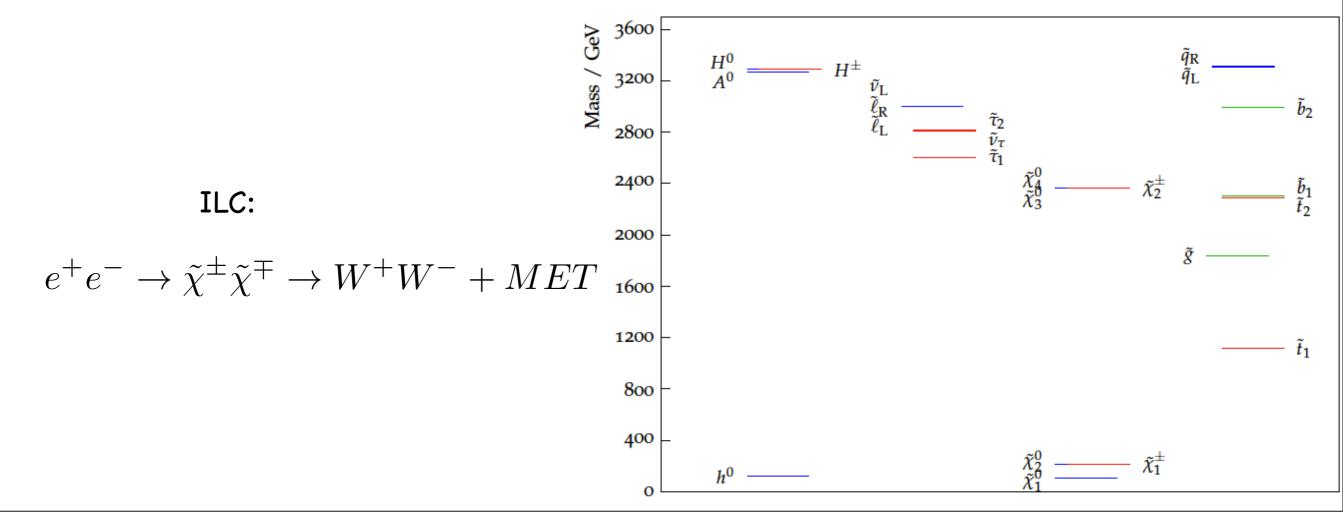

in SU(5) & SO(10), Higgs and matter live in different representations: non-universality expected

$$m_{H_u} \neq m_{H_d} \neq m_0$$

LHC:

gluino pairs; inos-> trileptons; A,H direct production

ILC: Zh, Ah, ZH production; low lying EW-ino pairs


Non-universal gaugino masses: Gauginos get mass differently in SUGRA:

$$\mathcal{L}_F^G = -\frac{1}{4} e^{G/2} \frac{\partial f_{AB}^*}{\partial \hat{h}^{*j}} \left|_{\hat{h} \to h} \left(G^{-1} \right)_k^j G^k \bar{\lambda}_A \lambda_B \right|_{\hat{h} \to h}$$

LHC:

clean trileptons:

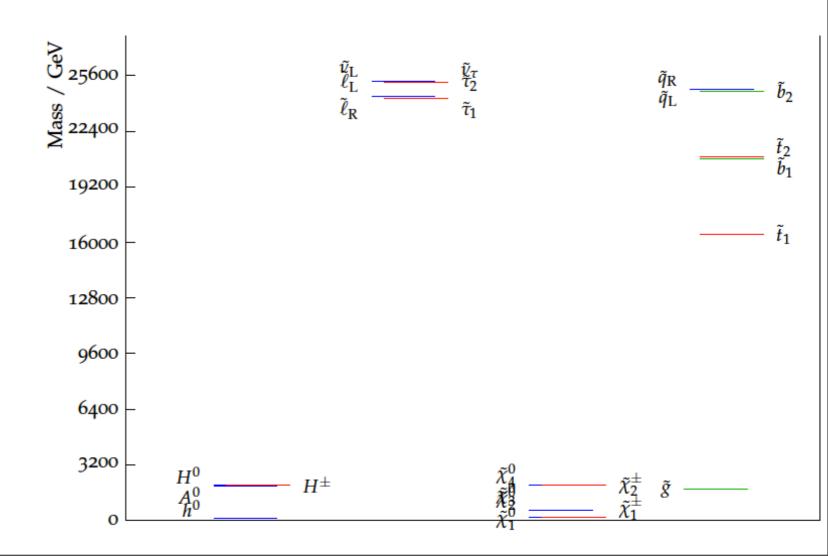
$$pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to WZ + MET \to 3\ell + MET$$

Kallosh-Linde-Olive; Kane et al. G2MSSM string-inspired with moduli stabilization

$$m_{3/2}, \ m_{\tilde{q},\tilde{\ell}} \sim 25 - 100 \ TeV$$

gauginos: AMSB form with wino = LSP

LHC: gluino pairs with


$$\tilde{g} \to tb\tilde{\chi}_1^{\pm}$$

displaced vertices?

$$e^+e^- o ilde{\chi}_1^\pm ilde{\chi}_1^\mp \gamma$$

small mass gap~200 MeV

$$\tilde{\chi}^{\pm} \to \tilde{\chi}_1^0 \pi^{\pm}$$

Normal scalar mass hierarchy (NMH): reconciles

$$(g-2)_{\mu}$$
 with $BF(b \rightarrow s\gamma)$

split generation with $m_0(1,2) \ll m_0(3)$

$$m_0(1,2) \ll m_0(3)$$

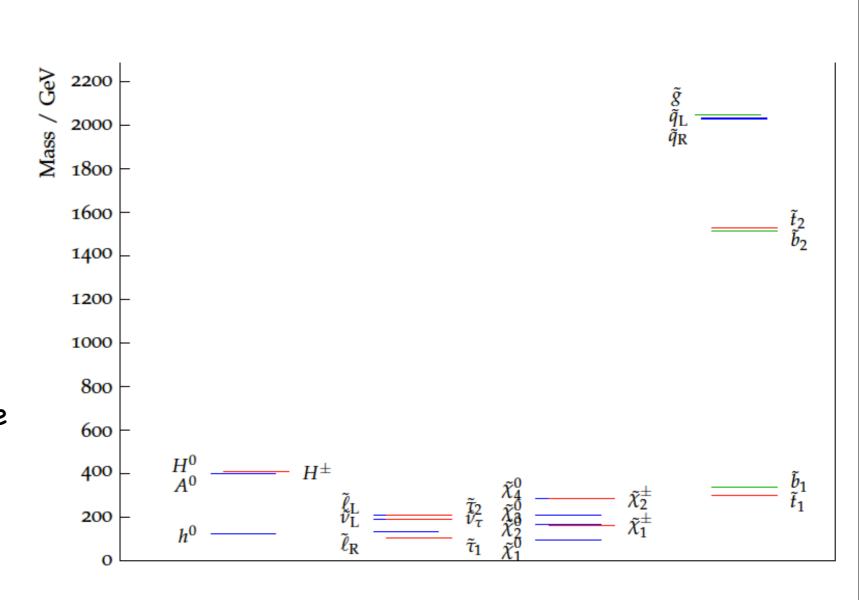
LHC:

$$pp \to \tilde{q}\tilde{q}, \ \tilde{q}\tilde{g}, \ \tilde{g}\tilde{g}$$

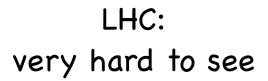
$$\text{ILC:}$$

$$e^{+}e^{-} \to \tilde{e}_{R}\bar{\tilde{e}}_{R} \to e^{+}e^{-} + ME$$

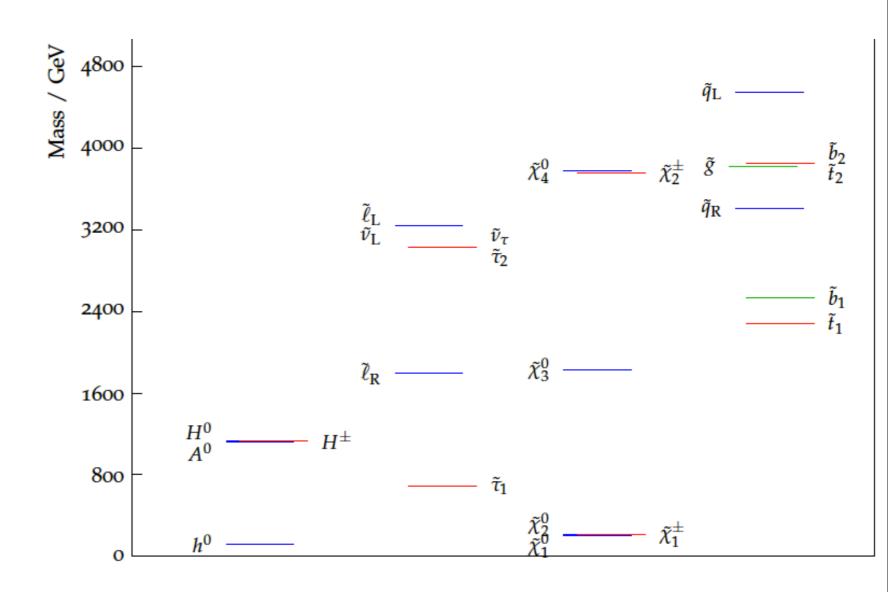
$$\frac{\tilde{g}_{g}}{\tilde{g}_{g}} 4800$$


$$\frac{1}{4000} = \frac{\tilde{h}_{1}}{\tilde{h}_{1}} = \frac{\tilde{h}_{2}}{\tilde{h}_{1}} = \frac{\tilde{h}_{2}}{\tilde{h}_{1}} = \frac{\tilde{h}_{2}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{1}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{1}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{1}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{1}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{2}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde{h}_{1}}{\tilde{h}_{2}} = \frac{\tilde$$

A pMSSM model looks like SPS1a' but now LHC-compatible:


LHC:

light stop, sbottom;
sleptons;
EWinos;
m(gluino) raised up
compared with SPS1a'


ILC:
sleptons,
EWinos all accessible!
previous SPS1a' studies applicable
m(h)~125 GeV

Brummer-Buchmueller: string-inspired mixed gauge-gravity mediation

ILC: higgsino pair production with 1-3 GeV mass gap

Conclusions:

- Radiative natural SUSY:
 reconciles m(h)~125 GeV with EW finetuning
- light higgsinos: m(higgsino)~m(higgs)
 new signatures for LHC: SS-dibosons;
- can elude LHC searches without compromising naturalness
- smoking gun signature: higgsino pairs at ILC: must see!
- variety of theory-motivated benchmarks with m(h)~125 GeV beyond LHC8 reach but discoverable at ILC

LHC may get lucky, but ILC is required to completely probe weak scale SUSY